
2016 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) TECHNICAL SESSION

AUGUST 2-4, 2016 – NOVI, MICHIGAN

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Robert VanVossen
DornerWorks, Ltd.
Grand Rapids, MI

ABSTRACT

One of the best ways to achieve full hardware utilization while maintaining a strict level of security and safety in a single System
on a Chip (SoC) is through the use of virtualization. In this paper, we will explain the capabilities of the Xilinx Zynq UltraScale+
MultiProcessor SoC (MPSoC) and how they relate to target technology areas such as ARM processors and multi-core technology.
We will also explain the features of Xen that aid in improving the safety and security of a virtualized system. We will provide examples
of how to utilize these features, identify benefits, and explain how they can be used to implement several technology features
including: SWAP-C reductions via consolidations, modular software architectures, and integration of multiple real-time operating
systems.

INTRODUCTION

As embedded hardware improves, the added complexity
makes it increasingly difficult to utilize all of a new platform’s
available computing resources while maintaining the same
levels of safety and security. With the rise and expansion of
nation-state funded cyber terrorism, safety and security are an
ever growing concern for the U.S. Army and the USMC, and
the demand for rigorous safety and security must be met for
all systems. One of the best ways to achieve full hardware
utilization while maintaining this strict level of security and
safety in a system is through the use of virtualization.

A hypervisor is the foundational software that provides a

means to virtualize a system. Xen is one well-established
example that makes it possible for multiple commodity and
real-time operating systems to be run concurrently in their
own partitioned hardware space. Strict memory partitioning
means that one guest operating system cannot read, write, or
interfere in any way with the memory of another guest. Xen
also has several features, such as CPU pinning and CPU-
pools, that allow for fine grained control of the scheduling and
processing time of these guests across the multiple cores. For
example, CPU pinning allows for a guest to be run only on
specified physical CPU cores, giving a guest guaranteed
levels of performance and significantly reducing its ability to
interfere with other guests elsewhere on the system. CPU-
pools further enhance this control by allowing different
scheduling algorithms to be applied to each of the system’s
configured pools of CPU cores.

ZYNQ ULTRASCALE+ MPSOC
 The Zynq UltraScale+ MPSoC is one example of modern,

powerful hardware that can use a hypervisor to manage its
complexity. This system on a chip created by Xilinx contains
several interconnected processing units, including a quad-
core ARM Cortex-A53 application processor, a dual-core
ARM Cortex-R5 real-time processor, and an ARM Mali-400
Graphics Processing Unit (GPU), all tightly coupled to the
internal 16nm Xilinx UltraScale+ programmable fabric [1].
The ARM Cortex-A53 processor is known as the Application
Processing Unit (APU) while the ARM Cortex-R5 is known
as the Real-time Processing Unit (RPU). The ARM Cortex-
A53 supports the 64-bit ARM specification, ARMv8, and the
Xilinx Zynq UltraScale+ MPSoC is one of the first SoCs
containing the Cortex-A53 processor to come to market.

The Z US+ MPSoC takes advantage of some of the newest

ARM peripherals that improve virtualization, such as the
Generic Interrupt Controller (GIC) and the System Memory
Management Unit (SMMU). However, the complexity of this
new system on a chip makes it very difficult to fully utilize
with a single operating system or application, and further,
running multiple applications concurrently presents security
issues. This is where the Xen hypervisor comes in.

XEN

The Xen hypervisor is a mature, open source project that
started as a research project almost 20 years ago and has been
in production use for over 12 years. Xen started as the
“XenoServer” in the late 1990’s at the University of
Cambridge. The name was changed to the “The Xen Project”

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Page 2 of 7

in 2003 and Xen 1.0 was released the next year in 2004. In
2007, Citrix acquired XenServer and reaffirmed continued
corporate sponsorship of The Xen Project and its open-source
development. In 2013, a fully functional Xen port to ARM
was released. Xen also joined the Linux Foundation that year.

Xen is a Type 1 hypervisor, which means that it runs directly

on the hardware, as opposed to a Type 2 hypervisor that is
layered above another Operating System (OS) [2]. A Type 1
hypervisor does not incur the overhead of the host OS, which
makes it the most suitable option for embedded platforms. A
Type 1 hypervisor gets fine grain control of all of the system
resources, instead of just the resources that a Host OS would
provide. A Type 1 hypervisor typically reduces the number of
attack vectors compared to a Type 2 hypervisor.

Xen on the Zynq UltraScale+ MPSoC runs solely on the

APU. This leaves the RPU open for non-virtualized
applications. Since Xen adds some overhead (slight, but not
zero), applications that have very strict timing requirements
can be run independently on the RPU. A block diagram of an
example Xen system running on the Z US+ MPSoC can be
seen in Figure 1.

Figure 1: Xen on the Z US+ MPSoC

Benefits
The Xen hypervisor provides several benefits that should be

considered when designing a system. (1) One of the main
reasons to use a hypervisor is that it allows multiple OSes to
be run on the same processor. This means that a legacy design
that was spread among multiple, federated processors, can

now be integrated on a single processor. This reduces the Size,
Weight, and Power/Cost (SWaP-c) of the system. (2) Using
the Xen hypervisor also improves code portability of
applications/Operating Systems. Once an application or OS
runs on top of Xen, it is much easier to port it to future
hardware. Since Xen provides abstraction from the
underlying hardware, old virtual machines can be easily
migrated to Xen running on new hardware. (3) The isolation
Xen provides between its guests also greatly enhances the
security and safety of the system. For example, the Xen Inter-
Domain Communication framework provides the potential
for a design with red and black on the same system for a Cross
Domain Solution (CDS). Xen has been used in SecureView,
which is a CDS for x86 platforms. (4) Using Xen also
increases the reliability of a system by providing redundancy.
Redundant guests can run concurrently, so if one guest is
comprised, the other guest can take its place.

ARM HARDWARE VIRTUALIZATION
The ARM processor architecture has a rich history back to

the 1980’s, and with the ARMv7a instruction set release in
2011, ARM processors have provided support for
virtualization extensions. These extensions provide a means
to make virtualization easier to perform with less required
software. To understand how these extensions work, one must
first understand exception levels. In the ARM architecture, an
Exception Level (EL) is an operating mode that dictates
which instructions can be executed and which registers can be
accessed [3]. EL3 is the highest level, with full access to all
processor functionality. This is where a secure monitor is
expected to run. A secure monitor is the software in the
system that has the potential to manage everything else. It has
the highest privilege and therefore should be the most trusted
piece of software. EL2 is where a hypervisor is expected to
run. EL1 is where an OS is expected to run, with limited
access to the processor. EL0 is where applications are
expected to run, with limited access to the processor. Xen
follows this suggested specification, running at EL2 and
booting guest operating systems at EL1.

Each exception level has its own copy of certain registers.

For example, each exception level has its own table for the
Memory Management Unit (MMU). This allows Xen to map
the memory space for a guest OS at Stage 2. Then the guest
can map its own memory using Stage 1 translation tables,
creating a virtual-to-physical mapping as it normally would,
but the physical addresses are really just intermediate values
that then go through the Stage 2 translation set up by Xen.
This makes it easier to support the many possible memory
configurations that could exist across multiple guest operating
systems.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Page 3 of 7

Some devices also have a virtualization-specific register set.

One example of this is the system timer of the processor. A
guest, which is running at EL1, will not be able to access the
physical system timer, but it can access the virtual timer. The
virtual timer works in almost the same exact way as the
physical timer, but has an offset for each guest, so a guest
cannot derive information about the hypervisor or other
guests.

As the name suggests, Exception Levels correspond to the

occurrence of exceptions. Each possible exception in the
system occurs at a specific EL. For example, if the current
exception level is EL1 and an address was not mapped in the
EL1 MMU, then when that address is accessed, a data abort
occurs and the exception handler at EL1 gets called and the
system stays at EL1. If the current exception level is EL1, the
address was mapped in the EL1 MMU, and that address was
not mapped in the EL2 MMU, then a data abort occurs and
the exception handler at EL2 gets called and the system
transitions to the higher exception level, EL2. This means that
any issues get handled at the correct level of software.

ARM also allows configuration for certain registers to be

accessed at lower (less privileged) exception levels.
Therefore, certain registers that are not deemed to be a
security concern by Xen can be modified directly by the guest.
One example of this is the “TLBI VAE1” (TLB Invalidate by
VA, EL1) special register. Xen configures the system so that
a guest can write to this register. This is not a security concern
because the guest can only invalidate its own virtual memory
mappings. In other cases, the register access can cause an
exception at a higher Exception Level so that the software
there can validate the request. One example of this is the
“GICD_ICFGRn” (Interrupt Configuration Registers)
register. Xen configures the system so a guest can not write to
this register. Xen handles the interrupt that occurs and
arbitrates the request. If a guest is allowed to map that
interrupt, based on configuration, then Xen does the actual
register write. If the guest is not allowed to map that interrupt,
then Xen just returns to the guest. Xen uses these mechanisms
to give the guests exactly the rights they need and no more
(i.e., the security principle of least privilege).

INPUT/OUTPUT (I/O)

Embedded systems need to interact with various forms of
input and output. Therefore, a method is needed to manage
the I/O between the multiple guests. Xen provides two
methods of I/O handling: paravirtualization and pass-through.
The benefits and drawbacks of each method of device
mapping will be described in this section.

Paravirtualization
I/O Paravirtualization uses software to share a device from

a privileged guest to any other guest that needs to access the
device. The privileged guest is the only one that has direct
access to the device and contains the normal device driver to
interact with the device. Then what Xen calls a split driver is
used to share the data from the privileged guest to the other
guests. A split driver is made up of a backend driver in the
privileged guest and a frontend driver in the other guests that
want to access the device. The backend driver sets up a shared
ring buffer, and an event channel (a notification) for each
guest that needs to access the device. The frontend driver in
each guest then connects via a wrapper Application Program
Interface (API) to those sharing mechanisms. A diagram of a
split driver can be seen in Figure 2.

Figure 2: Paravirtualized split driver

Since the privileged guest arbitrates access to the device, the
data from the device can be shared across virtual machines
without breaking partitioning. This is useful if multiple guests
need to access the same I/O channel. Another advantage is
that the frontend driver presents an abstraction of the specific
device, so that guests can be more generic and thus more
portable. This can be an initial drawback, because if the guest
OS does not support that frontend driver, it needs to be
developed. Paravirtualization also adds another layer to the
device driver stack, therefore the performance will not be as
fast as native OS usage of the device. If multiple guests are
sharing the same device the privileged guest must implement
an allocation scheme to prevent a guest from monopolizing
that device. Since this method takes advantage of the strict
memory sharing infrastructure of Xen, it is a safe and secure
method for handling I/O.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Page 4 of 7

Pass-Through
Device pass-through uses the System Memory Management

Unit (SMMU) and the GIC that is available on the Zynq
UltraScale+ MPSoC to directly pass a device to a guest (Intel
architectures provide a similar device called an IOMMU).
Pass-through means that the guest gets sole access to the
device. A diagram of a passed-through device can be seen in
Figure 3.

Figure 3: Passed-Through Device

This direct and exclusive access to the device is enforced by
the SMMU hardware, making this I/O method quite secure.
Only memory-mapped devices, such as a UART, can be
passed-through. Also, bus-style interfaces must pass-through
the root bus controller. For example, an entire SPI bus needs
to be passed into a guest – not individual SPI devices. Pass-
through provides the best performance, since the guest gets
direct access to the device, but at the cost of preventing
sharing of devices. The Z US+ MPSoC helps mitigate this by
providing a large number of peripherals, such as 4 Ethernets
and 4 UARTs. An example simple configuration of XZD is
shown in Figure 4.

Figure 4: Simple Example XZD Configuration

This simple configuration with Xen on the Zynq
UltraScale+ MPSoC could have system domain (Dom0)
mapped to CPU0 with a UART and an Ethernet device, then
3 guests could each run on their own CPU with their own
UART and Ethernet device passed-through. Xen is used to
enforce the passed-through devices and CPU configurations.
Pass-through can also be used to give a guest direct access to
additional peripherals that are instantiated on the FPGA of the
Z US+ MPSoC.

MULTICORE AND SCHEDULING

Since the Z US+ MPSoC contains a quad-core processor, it
is important to effectively manage which tasks run on which
cores. This requires schedulers that are multicore capable.
Xen provides multiple schedulers that have this ability. Xen
also provides a couple of ways to more finely control the
system than just choosing the scheduler. These features are
CPU Pinning and CPU Pools.

Schedulers
Xen has several available schedulers: Credit, ARINC653,

and RTDS. These schedulers determine which guest runs on
which physical Central Processing Unit (pCPU) using virtual
CPUs (vCPUs), where the vCPUs are schedulable processor
units. Each guest can have multiple vCPUs, where each vCPU
is run on a pCPU. This means that a guest can run on multiple
cores at the same time, allowing multi-threaded applications
in one guest to take advantage of multiple cores.

The Credit scheduler is the default scheduler in Xen. It is a

“fair time” algorithm similar to the default Linux scheduler.
This scheduler gives guests a roughly equal amount of time,
with some load balancing built in, therefore it is the scheduler

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Page 5 of 7

that is used in the vast majority of server applications. This
scheduler supports multicore scheduling. This scheduler
maximizes CPU throughput at the cost of latency.

The ARINC653 is a real-time scheduler that meets the

aviation standard, ARINC653, originally developed by
DornerWorks and contributed to the Xen open source
community. It is a scheduler that provides strict time isolation
and system determinism. If a guest needs to run for 20 ms
every 30 ms, that time is guaranteed to be given to that guest.
This scheduler supports a limited form of multicore support
using CPU Pools. The determinism of this scheduler does
reduce the CPU throughput since it is not a work conserving
algorithm.

The Real Time Deferrable Server (RTDS) scheduler,

originally called RT-Xen [4], is an experimental real-time
scheduler for the Xen hypervisor. vCPUs are scheduled using
the deferrable server algorithm. A vCPU receives budget of
CPU resources every period. Budget is replenished at the start
of every period. Each vCPU consumes budget when running
and suspends execution when no budget remains. The vCPU’s
budget is preserved when there is no task, i.e., another vCPU
will not be scheduled until the budget is depleted for the
current vCPU.

CPU Pinning
CPU Pinning is a configuration option that specifies the

physical CPUs (pCPUs) on which a guest can run. This can
be as simple as allowing a guest to run on a single pCPU or
pinning the guest to a sequence of the available pCPUs.
Pinning a guest to a pCPU does not limit any other guests
from running on the pCPU. If a system needs a single critical
guest and a few other less critical guests, CPU Pinning can be
used to pin the critical guest to one or two pCPUs and then
the other guests can be pinned to the remaining available
pCPUs.

CPU Pools
CPU Pools are used to separate the physical CPUs into

scheduler pools. This can be used to have more than one type
of scheduler running on the system at the same time. This is
useful if a system needs a real-time scheduler for just a portion
of the guests. Each pCPU can only be in a single pool, but
each pool can contain multiple pCPUs. Each pool can only
run a single scheduler. CPU pools are used to achieve
ARINC653 on a multicore system. Each CPU is placed in its
own pool. Therefore, each CPU has its own instance of the
scheduler running.

XEN ZYNQ DISTRIBUTION

The Xen Zynq Distribution (XZD) from DornerWorks
provides a prebuilt Xen system that works on the Zynq

UltraScale+ MPSoC. This distribution is highly customizable
and completely open source. The distribution provides all of
the necessary components for booting and using a Xen
system: a Xen kernel, a sample Device Tree Blob (DTB), a
system domain (dom0, including a Linux Kernel and File
System), sample guest configuration files, a sample Linux
guest kernel, sample Linux guest file systems, and a sample
“Baremetal” guest image. The XZD is a means to quick start
development or to easily test out Xen and its features on the
Z US+ MPSoC. XZD also has a companion User Manual that
explains how to boot the system, perform basic Xen
administrative tasks, and how to build the XZD from source
code. XZD can be downloaded for free from http://xen.world.

PERFORMANCE

One of the biggest concerns with embedded systems is
performance. Adding anything new to a system can increase
overhead to the system, which may prevent the system from
meeting requirements.

Developers at Citrix executed performance benchmarks on

the Applied Micro X-Gene, an ARMv8 64-bit 8 cores 2.4 Ghz
processor, and on an Intel Xeon CPU X5650 [5]. In most
cases, Xen on ARM had less overhead than Xen on x86. In all
cases, Xen had less overhead than KVM (an open source
competitor hypervisor to Xen). In all cases, Xen on ARM had
a 2% or less virtualization overhead increase. That is,
virtualizing applications incurred less than 2% performance
penalty compared to running them natively.

Xen Overhead on ARM

< 2%

Table 1: Xen Overhead Percentage

Boot Time
DornerWorks has performed measurements of the boot time

and interrupt overhead of Xen on the Xilinx ZCU102.
Normally, to get performance numbers in a Xen system
Xentrace is used. Xentrace is a series of Xen system calls that
captures the current time and saves it for later viewing.
Xenalyze is an application that is then used to read the results
from Xentrace calls. However, Xentrace is not available for
use at the entry point of Xen or earlier, so a different method
was needed to get the boot times. The code was instrumented
at key points in the boot-up sequence and timestamps were
collected at those points. Each time stamp was collected with
a single assembly instruction. These timestamps are displayed
on the console after the boot-up sequence has completed, so
that it does not influence the boot time. The timer used to get
the time stamps is the 64-bit ARM Physical Generic Timer.
This timer has a frequency of 100 MHz (10 nanosecond
resolution). The boot sequence of XZD starts with the First
Stage Boot Loader (FSBL), which sets up peripherals like the

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Page 6 of 7

DDR controller and programs the FPGA with a Bitstream.
The FSBL then executes U-Boot, which loads the Xen kernel,
the system DTB, and the Dom0 Linux kernel. U-Boot then
executes the Xen kernel. The Xen kernel initializes and then
executes Dom0. For these measurements, we start at U-Boot
because the boot time of the FSBL can vary due to different
booting methods and configuration. Using this methodology,
the boot times at the start of U-Boot were found as follows:

Figure 5: Xen System Boot Times

 U-Boot ends booting after 929.2 ms and the Xen kernel
finishes booting after 986.3 ms. So Xen itself only adds 57.1
ms to the boot time. Dom0 currently adds another 4086.8 ms
to the boot time. The Dom0 kernel that was used for testing
was a Linux Ubuntu distribution, which could likely be
optimized to remove unused drivers. This would help reduce
the boot time of the Dom0 kernel.

Interrupt Overhead
The approach taken for determining the hypervisor impact

to IRQ latency was to measure the average IRQ latency of an
application running natively, delay, and then subtract that
from the average IRQ latency of the same application running
as a Xen guest, delay’. This approach factors out any
hardware or application software delays and leaves only the
additional delay that should be attributed to running the
application as a Xen guest. To measure delay and delay' an
application was written that, upon detection of a general
purpose I/O (GPIO) line going low, changes the state of a
second GPIO line. The ZCU102 provides a PS push button on
MIO-22 and a PS controlled LED on MIO-23, which were
used to meet the application’s GPIO needs. The application
toggles the LED state almost immediately after the interrupt
generated by the push button vectors to the generic IRQ
handling code. Only a minimal context, specifically registers
X0 and X1, is saved off before toggling the LED. The PS push
button was pressed and an oscilloscope was used to measure
the time delta between the start of the waveform change on
the PS push button channel to the start of the waveform
change on the LED channel. Using this process, the following
data sets were collected.

Sample

Native Linux
IRQ Latency

(usec)

Xen Linux
Guest

IRQ Latency
(usec)

1 0.272 2.56

2 0.272 2.7

3 0.636 2.54

4 0.644 2.6

5 0.272 2.34

6 0.272 2.66

7 0.272 2.52

8 0.272 2.58

9 0.272 2.64

10 0.272 2.8

11 0.272 2.54

12 0.272 2.56

13 0.284 2.68

14 0.264 2.58

15 0.264 2.68

16 0.272 2.54

17 0.268 2.66

18 0.268 2.62

19 0.268 2.52

20 0.252 2.56

21 2.52

22 2.56

23 2.56

24 2.44

Average
(usec) 0.307 2.58

Xen IRQ
Delay (usec) 2.27

Table 2: Interrupt Overhead Samples

The Xen delay was calculated as follows:

Xen delay = delay' - delay

Xen delay = 2.58usec - 0.31usec

Xen delay = ~2.3usec

U-Boot

Start, 0
U-Boot End,

929.2

Xen C Env
Enter, 946.3

Xen Pre-Init
Time, 956.3

Xen Boot
End Time,

986.3

Dom0 Start,
989.4

Dom0
Threads

Spawned,
1374.1

Dom0 End,
5073.1

0 1000 2000 3000 4000 5000 6000

Delta From U-Boot Start (milliseconds)

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

XEN ON THE ZYNQ ULTRASCALE+ MPSOC

Page 7 of 7

CONCLUSION
As computing systems become more complicated,

hypervisors can be used to more easily utilize all the power a
platform provides. The Xen Project is a mature, open source
hypervisor which has been used in the industry as a secure,
safe, and efficient solution. Using the hardware virtualization
extensions that the ARM Cortex-A53 processor provides,
Xen provides a virtualized environment to run multiple guests
on the single chip. The Z US+ MPSoC provides an SMMU
and a GIC, which allows Xen to pass-through I/O devices to
guests to give them sole, direct access to those devices. All of
these features combined with Xen implementation can be
used to bring virtualization to the embedded world.

The Xen Zynq Distribution provides a means to quickly get

up and running with Xen on the Zynq UltraScale+ MPSoC.
This distribution can be modified to meet the needs of the user
and is a great way to start a project (http://xen.world). It is
also useful to test out the Xen hypervisor.

REFERENCES

[1] Xilinx, “Zynq UltraScale+ MPSoC Technical Reference
Manual - UG1085 (v1.1)”, March 2016.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the Art of Virtualization”, ACM SIGOPS Operating
Systems Review, 2003.

[3] ARM, “ARMv8 Architecture Reference Manual - A.g”,
July 2015.

[4] S. Xi, M. Xu, C. Lu, L.T.X. Phan, C. D. Gill, O. Sokolsky
and I. Lee, “Real-Time Multi-Core Virtual Machine
Scheduling in Xen”, ACM International Conference on
Embedded Software (EMSOFT'14), October 2014.

[5] S. Stabellini, “Xen on ARM: status and performance”,
Xen Developers Summit, August 2014.

